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9. Concurrent programming 

 
In this chapter we take look at the programming technique called Concurrent 
programming. We shall begin with a quote: 
 

Concurrent programming is the name given to programming notation and 
techniques for expressing potential parallelism and solving the resulting 
synchronization and communication problems. Implementation of parallelism is a 
topic of computer systems (hardware and software) that is essentially independent 
of concurrent programming. Concurrent programming is important, because it 
provides an abstract setting in which to study parallelism without getting bogged 
down in the implementation details’. 
(Ben-Ari, 1982) 

 
There are two points especially worth noting in this quote. First, we talk about potential 
parallelism . We must be prepared for synchronisation and communication problems , 
as described at the end of the sentence. But, depending on the system and the scheduling 
method, such things may not occur. If we have a static scheduling or there are no shared 
resources we may not need to be aware of the concurrent programming techniques. But, 
as shown earlier, such systems are often not very productive.  
 
Second, note the abstract setting  for studying parallelism, without getting bogged 
down in the implementation details . We try to raise the abstraction level and find some 
general principles which can be applied to virtually any environment. In this chapter our 
target is not to get bogged down! 
 

9.1  Processes 
At the beginning of the course we defined tasks and jobs. Every now and then the word 
process  has also been mentioned during the course. Here we connect these three 
together. 
 

One process encapsulates thread of execution (thread of control). A process in modern 
operating systems can embody many threads of controls. Process is dynamic, program is 
static. Concurrency implicates potential parallelism: the concept of a process can be found 
in 

• operating systems 

o Windows ☺ 

• programming languages 

o modula-2,  

o Ada,  

o Java 
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Figure 9.1  Task – Job - Process 

 

Figure 9.1 illustrates the relation of task and process to a job: When we have a piece of 
code (=task) and the processor resources to execute it (=process), then we have a job 
which is doing something useful. There may various instances of a single task executed by 
various instances of system processes. So when our focus turns to the question “how to 
synchronise processes” we are actually looking at the question “how to synchronise the 
instances of our tasks handed to the system for execution”. 

Consider the following situation: We have two processes, P1 and P2, which both use 
variable, say, v . They want to execute the following pieces of code: 
 
 

P1 V := 1; 

P2 V := 0; V = V + 1; 

 
 
If these two pieces of code are independent, the results for both is the same, i.e. for both 
give v  =1. However, if programs are executed concurrently, the results of P1 and P2 may 
be different. As follows: 
 
 

 
Figure 9.2  Concurrent execution 
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This kind of ”interleaving” (we’ve been talking about all the time) makes it difficult to deal 
with global properties from the local analysis. Obviously there should exist some method 
for exclusive access of the variable v . The big picture is quite similar to the situation where 
we had the resource R: One task (P2) should have exclusive access to the resource and 
other ones (P1) should be blocked until they can safely use the resource. A possible but a 
bit heavy method would be to create a fake (virtual?) resource R with the appropriate 
semaphore/mutex object, and use it to gain exclusive access to variable v .  
 
(As figure 9.2 suggests, we’ve silently assumed that access to the memory is atomic: A 
task switch cannot occur while an assignment is going on.) 
 
When getting concurrent on the program code level, there are two basic schemes often 
used for communication between the processes: 
 

• Messages  
• Shared variables 

 
We shall study both of these in this chapter. 
 

9.3  Concurrency in Programming Languages 
Some programming languages contain features for supporting concurrency. Examples 
from these will be seen soon, but first we’ll take look at the pros and cons of such features. 

On the pro side we may find the following facts: 

• More readable program. 
• More portable program. 
• No strong requirements of operating system in embedded systems. 
• Compiler can (in principle…) analyse faulty interactions between processes. 

 
On the con side we have: 

• Different languages have different models of concurrency (may be difficult to 
combinate programs). 

• It may be difficult to implement the model used in a specific language to a specific 
operating system. 

• There are standards of operating systems that makes program portable (=support 
for porting exist on the OS side, too). 

 

The concept of process is implemented in a different way in different programming 
languages and operating systems. We’ll take a quick look at these features, since they 
have a huge effect on the interprocess communication.  
 

9.3.1 Properties of a Process 

The “concurrency potential” of a process may depend on several of its properties. What is 
the organisation of the processes in the system and how processes may be started and 
terminated. The following lists provide a crude “roadmap” for navigating in the process 
type jungle. 



          TIES426 Real-time systems 2008  71(102) 
 
 
 
 
Structure and level of a process  may be defined as follows: 

• Static: the number of processes is given at the compilation time 
• Dynamic: the number of processes can be changed at runtime 
• Nested: processes can be defined at arbitrary level in program code, e.g. a process 

can be defined in a process 
• Flat: processes can be defined only at the highest level of program code 

 
Termination of a process may vary:  

• The program code of the process ends (END.) 
• Suicide: process executes a ”self-termination” statement (abort() ) 
• Abortion: by explicit action of an another process (kill -9 ) 
• An exceptional event (exception)  (throw Xxxx… )  
• Never: process runs an infinite loop (while (true) {… ) 
• When there is no more need for the process (?) 

 

The parent/child relation  of a process may contain the following properties: 
• guardian/dependant 
• active/reactive/passive 
• protected 
• server/client 
• process/thread 

 

The lifespan of a single process may be presented with a state diagram  of a process 
(Figure 9.3).  
 

 
 

Figure 9.3  Process state diagram 
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9.3.2 How to Get Concurrent? 

When there are various processes co-existing in the same system, their relation may be 
arranged as co-routines  or on “fork and join ” basis. We’ll take first a look at the latter 
one. Both scenarios also have their own methods to guarantee proper termination of the 
co-existence. 

 
When a new process is created via a fork operation (pid = fork(); ), both the original 
and the new routine are run simultaneously. In UNIX the whole image of the caller is 
copied, only PID and PPID are different. The pid value returned by the fork is usually used 
for determining “who is who”: For the child process the value is zero, for the parent the pid 
of the child is returned. As follows: 
 

#include <unistd.h> 
int main(void) 
{ 
 pid_t pid = 0; 
 int status = 0; 
 pid = fork(); 
 If (pid == 0) { 
  /* I am the child */ 
  doTheChildStuff(); 
 } else { 
  /* I am the parent */ 

doTheParentStuff(); 
  status = join(); 
 } 
 return 0; 
}  

 
Exercise 9.1:  Why it is useful for the parent to receive the child PID? 
 
The parent, in general, cannot be sure about when the child is going to terminate, so the 
join()  call is built to handle both conditions shown on figure 8.4. 
 

 
Figure 8.4  Fork and Join 
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Cobegin  and coend  is mentioned to be a simple and structured way to describe 
simultaneous running of program statements. (Nobody mentioned anything about how 
simple it is to implement…) The programming language may contain instructions similar to 
these: 
 

cobegin 
S1; 
S2; 

  S3; 
S4; 

coend 
 
This causes the four program statements S1-S4 being executed simultaneously. Figure 
8.5 illustrates this.  
 

 
Figure 8.5  cobegin-coend 

 
 
It is also possible to have co-routines . Essentially this is a set of subroutines which allow 
the control of execution being transformed explicitly between them. 
 
 

8.4.  Interprocess Communication 
 
To get the processes run as concurrent items is good. Even better is to allow them 
communicate with each other. Here we describe with more detail some concepts we’ve 
already encountered so far. 
 
Shared variables are an effective way to communicate between processes.  As seen 
earlier, this may lead to trouble if two processes are allowed to update the same variable. 
Why does this happen? The operation v := v + 1  can be implemented as three 
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separate machine language instructions: load the value v  to register, increment the 
register, store the register value to memory. Like this (iX86): 
 
 MOV AX, [0013] 
 INC AX 
 MOV [0013], AX 
 
(Note: “can be”, does not have to be. See PIC: incf 0x13,F) 
 
To provide correct results, the update operation must be atomic. A common tool for this is 
to mark the “critical” code to be, surprise, a critical section . Access to critical sections is 
given exclusively to one process, and no other process may enter the section until it is no 
longer in use. Critical sections perform synchronisation via mutual exclusion . 
 
A very simple (not to say crude) way to implement mutual exclusion is called busy 
waiting : Define a shared variable, flag , which indicates if the critical section is “occupied” 
or not. Until the P2 process sets the flag, the process P1 stays waiting for the resource to 
become available. 
 

Process P1      Process P2 
 …            … 

While flag = down do        flag = up 
      Null           … 

End                 End P2 
… 

End P1  
 
(Here Null  stands for wasting some time.) OK, we’ve reached an eternal loop: To provide 
protection for shared variable access we’ve defined another shared variable which should 
also be protected… :-) Seriously, the method is quite ineffective, the Null  loop uses 
processor resources but is doing nothing useful.  
 
The next code sample displays a generalisation of this scheme. If we have two (or more) 
such  processes accessing the same critical section, then what is an appropriate method 
to implement the protocol in order to guarantee the mutual exclusion? 
 

Process P 
 do             

 entry protocol 
       critical section 

exit protocol 
  loop 

End P1  
 
 
We present a solution called Dekker’s algorithm . (Unfortunately the author was not able 
to find detailed information about this particular Dekker. Descriptions of the algorithm can 
be easily found with your favourite search engine.) 
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Solution 1:  Try the following: 
 

Process P1     Process P2 
   loop           loop 

flag1 = up          flag2 = up 
   while flag2 = up do         while flag1 = up do 
  Null             Null 

end                 end 
// critical section     // critical section 
flag1 = down      flag2 = down 
// non-critical section    // non-critical section 

end P1      end P2;  
 
 
There are two flags used for the entry protocol. The idea is to use one of them to mark that 
“I’m going to go there” and the other one to check if the other one has already “gone 
there”.  This should prevent both of the processes executing the critical section at the 
same time. However, there’s another problem here. Assume that the execution order of 
the instruction is as follows: 
 
 

Process P1     Process P2 
   loop            
        loop 

flag1 = up           
flag2 = up 

   while flag2 = up do          
  null              

end                  
 
       while flag1 = up do 
         null 
       end 
 
etc… 

 
 

(Remember, we may have a (RT)OS which gives CPU time as fixed-length ticks. If P1 and 
P2 are running on the same priority level, anything can happen...) 

 

What we have now: flag1  is up, flag2  is up, and nobody will be able to set them down. 
In other words, both processes stop in the null loop and neither will come out of it. This is a 
condition called livelock . It is different from the deadlock since both processes are 
running, but the overall result is the same: Nothing gets done. And there is no way to 
escape the condition. 

 
Solution 2:  Try testing before setting: 
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Process P1     Process P2 
   loop           loop 

   while flag2 = up do         while flag1 = up do 
  null             null 

end                 end 
flag1 = up          flag2 = up 
// critical section     // critical section 
flag1 = down      flag2 = down 
// non-critical section    // non-critical section 

end P1      end P2;  
 
 
 
This prevents the livelock, but it may cause both the processes to enter to the critical 
section, so this one may be even worse. (Exercise 9.2  Why?) 
 
Basically, the problem is that a process cannot set its own flag and test the other flag in 
one, atomic action.  If there are two things to read/write, then the process to be executed 
may be switched between the two operations. 
 

Solution 3:  Use the turn variable: 
 
 

Process P1     Process P2 
   loop           loop 

   while turn = 2 do         while turn = 1 do 
  null             null 

end                 end 
// critical section     // critical section 
turn = 2           turn = 1 
// non-critical section    // non-critical section 

end P1      end P2;  
 

 

Now the variable turn must have value 1 or 2. If it is 1, then P1 avoids an eternal null loop 
and P2 cannot enter the critical section. And the turn variable cannot get value 2 before P1 
has leaved the critical section. The same argument can be presented for P2, so the 
system appears to be safe. (The difference to the first, flag up/down –version is the fact 
that both processes now have their “own” value to read/write.) 

But this, either, is a perfect solution: If, for some reason, P1 crashes before it reaches the 
critical section, then P2 is locked. Also if this arrangement is used the two processes need 
to operate at the same frequency. It is not possible to have P1 run three times while P2 is 
run only once. So more advanced solutions are still needed… 

 

Solution 4:  Gary L. Peterson published the following solution in 1981: 

 



          TIES426 Real-time systems 2008  77(102) 
 
 
 
Process P1     Process P2 
   loop           loop 
 flag1 = up        flag2 = up 
 turn = 2         turn = 1 
     while flag2=up and turn=2 do     while flag1=u p and turn=1 do 
     null               null 
     end                   end 
     // critical section       // critical section 
     flag1 = down        flag2 = down 
     // non-critical section      // non-critical s ection 
   End          end 
end P1       end P2;  
 

This should work. Now we can guarantee that both processes will complete the critical 
section in finite time. Also the process which starts the pre-protocol will, sooner or later, 
enter the critical section, regardless of the behaviour of the other process. Also the 
requirement for equal frequencies no longer applies. So having both the “personal flags” 
and the “common turn” appears to solve the problem. 

The most amazing thing here is the year when the solution was published! 1981? I’d buy 
1891, but only 25 years ago…! Seriously, this is relatively new research area: The original 
critical section problem  was introduced by Dijkstra in the 1960’s, and the Dekker 
algorithm was introduced in 1986. 

Exercise 8.3  What if P1 crashes while in the critical section…? 

 

We may conclude this mutual exclusion discussion with the following remarks: 
Implementation of synchronisation with only shared variables is difficult, since 

• Busy-waiting technique is (relatively) complicated to use and (especially) test, since 

• Testing can miss certain combinations of events (“interleavings”) which may cause 
problems 

• Busy-wait is also inefficient  

• One task not following the rules of entry/exit protocol may cause the whole system 
to crash. 

 

So instead of running in a dummy loop we should halt the process until it may continue. 
Suspend  and resume  operations are used for this purpose. As follows: 

Process P1 
 // ... 
 If flag = down do 

  Suspend 
end 

 Flag = down 
 // critical section 
End P1  
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Process P2 
 // critical section 
 flag = up 
 resume P1 
 // ... 
End P1  

 

So instead of circling around a null  loop the process P1 suspends itself. P2, on the other 
hand, knows when P1 may continue and can resume it. No assumptions are made about 
the frequency the processes are running. The suspend  and resume  operations must be 
atomic.  

Note that this example is actually a half of the whole implementation. Similar procedure 
should exist the other way around, too.  The whole discussion presented above naturally 
applies to this version, the only change is that instead of wasting CPU time the suspend  
operation is used. 

 

Exercise 9.4   What if P1 is not suspended when P2 resumes it?  

Exercise 9.5  What assumption is made about the relationship between P1 and P2? 

 

9.5 Semaphore in Synchronisation 
Next we take a more detailed look at the semaphore/mutex system discussed earlier. The 
concept was introduced by Dijkstra in 1968. Using semaphores allows the synchronization 
protocol being simplified. Also the dummy null  loops may be avoided. 

Basically, a semaphore S is an (unsigned) integer value with two atomic operations, 
wait()  and signal() . These work as follows: 

• wait(S) : If S has a nonzero value, it is decremented by one, otherwise the caller 
is suspended until the value is greater than zero 

• signal(S) : Increments the value by one. 

Due to the atomicity no other process may interfere with these operations. (How this is 
achieved will be discussed a bit later.) Mutual exclusion is now simple to implement: 

 

Process P1     Process P2 
   loop           loop 
 wait(S)      wait(S) 
 // critical section    // critical section 
 signal(S)      signal(S) 
 // Blaablaa…     // Blaa2blaa2… 
   End          end 
end P1       end P2;  
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At the beginning of the execution of the system, the value of S = 1. After the first wait()  
call S = 0, and possible other wait() call will cause the caller to be suspended until 
somebody calls signal(S) . 

So one piece of each of the mentioned instructions will do the job. Considerable savings in 
code space compared to the earlier solutions. Of course, having two system calls may 
cause an increase in the execution time. 

The question about how to make the operations atomic still reminds. Higher-level 
explanation to this is that the semaphores are implemented within the operating system. 
And since the (RT)OS also handles the task switches, it has the necessary control over 
the semaphore operations, as well as the suspend and resume mentioned earlier. The 
suspend operation may be implemented in such a way that the suspended process is 
waiting for an event. An example of such operation may be the increment of a semaphore, 
i.e. the signal()  call.  

In multiprocessor system the implementation will be more complicated. And even 
on a single-processor environment the external interrupts may need to be disabled. 
But since the semaphore operations are very simple (=they don’t take much time) 
this is usually not a problem. 
 
A lower-level explanation may be provided with the following example: Intel IA-32 
instruction set has a special instruction CMPXCHG for low-level multiprocessor 
semaphore implementation. It is atomic operation (atomic instruction) and if prefixed with 
LOCK instruction, the hardware bus is reserved totally for the operation of the instruction.  
 
CMPXCHG - Compare and Exchange 
 
 Usage:  CMPXCHG dest,src  (486+) 
 Modifies flags: AF CF OF PF SF ZF 
  
 Compares the accumulator (8-32 bits) with dest.  I f equal  
 The dest is loaded with src, otherwise the accumul ator is  
 Loaded with dest. 
 
                                 Clocks                 Size 
        Operands         808x  286   386   486          Bytes 
 
        reg,reg           -     -     -     6             2 
        mem,reg           -     -     -     7             2 
 
        - add 3 clocks if the mem,reg comparison fa ils 
 

 
LOCK - Lock Bus 
 
 Usage:  LOCK 
                LOCK: (386+ prefix) 
 Modifies flags: None 
 
 This instruction is a prefix that causes the CPU a ssert  
 bus lock signal during the execution of the next  
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 instruction.  Used to avoid two processors from up dating the  
 same data location.  The 286 always asserts lock d uring an  
 XCHG with memory operands.  This should only be us ed to lock  
 the bus prior to XCHG, MOV, IN and OUT instruction s. 
 
                                 Clocks                 Size 
        Operands         808x  286   386   486          Bytes 
 
        none              2     0     0     1             1 
 
 
These two may be combined as follows: 

 
MOV EAX,#1 
LOCK CMPXCHG SEMAPHORE,#0 
JZ sem_closed 
; semaphore open and reserved (closed) 

 
 
To be precise, the atomicity of an action has been defined as follows (Lomte, 1977, 
Randel et al. 1978): 

 

An action is atomic if the processes performing it are not aware of the existence of 
any other active process, and no other active process is aware of the activity of the 
process during the time the processes are performing the action. 

 

This definition continues by mentioning that no communication or state change may be 
observed during an atomic action. Atomic actions hence may be said to move the system 
from one consistent state to another consistent state. 

 
Semaphores are effective but quite a low-level solution to the synchronisation problems. 
(Our target was not to get bogged down to the details, and we’re examining machine 
language instructions…!) Incorrect use of semaphores may lead to deadlock or livelock 
condition. Wrongly programmed semaphore can cause the system to crash every now and 
then, making the error extremely difficult to find.  

Consider the following: 

 
Process P1     Process P2 
 wait(S1)      wait(S2) 
 wait(S2)      wait(S1) 
 // ...      // ... 
 Signal(S2)     Signal(S1) 
 Signal(S1)     signal(S2) 
end P1       end P2;  
 

Both processes pass the first wait()  but then they will be suspended in the second 
wait() . And nobody’s there to wake them up!  
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This is perhaps a good place to make a brief note about somebody who might be there to 
wake ‘em all up: The watchdog  or the watchdog timer  is a timing device, which resets 
the system if it is not refreshed within a predefined time interval. More complicated 
watchdog systems may also save debug information and/or put the system to a safe state 
(“limp home mode”). A description of the LonWorks technology Neuron C watchdog timer 
can be found on page 7 - 7 (the 215th page from the start) of the document 
http://www.echelon.com/support/documentation/manuals/devtools/078-0002-02G.pdf . 

 

9.6 Communicating with Messages 
So far we’ve discussed mostly about problems and solutions concerning synchronization 
and communication via shared variables. The other communication method mentioned 
earlier, messages, is described in this subsection.  

Message exchange may be used for both synchronization and communication. A message 
needs to be send before it can be received. There are several ways which these two can 
be related to each other: 

• Asynchronic : the sender proceeds immediately 

• Syncronic : The sender proceeds after the message has been received. This is also 
called rendezvous . 

• Remote invocation : The sender proceeds when the receiver has sent a response 

 

(On some systems these may have names such as unacknowledged  / acknowledged  
services.) 

It is possible to build a synchronic / remote invocation service using asynchronic sevice: 

Process P1     Process P2 
 send_async(msg_a)    wait(msg_a) 
 wait(ack_a)     send_async(ack_a) 
 
 //...      //... 
 
 Send_sync(msg_b)    wait(msg_b) 
 Wait(rep_b)     // process msg_b 
 // use the response    Send(rep_b) 
End P2      End P2;  
             
 

(This structure also illustrates well the name “remote invocation”: Essentially a remote 
procedure call is being made.) 

Above we made no assumptions about how the message knows where to go. When 
sending something we need to know where to send it. There are two basic solutions to this 
addressing problem: 

• A particular medium (channel, mailbox, pipe, whatever…) is used. 
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• The receiver and perhaps also the sender are identified in the message 

On the second case one may talk about symmetric  and asymmetric sending  depending 
on whether both addresses or only the target address are included in the message.  

 

 

 

 

 


